восстановление микрофлоры кишечника после колоноскопии . как обследовать кишечник без колоноскопии . что можно кушать после колоноскопии кишечника . очищение кишечника в домашних . колоноскопия кишечника в краматорске . очистка кишечника перед колоноскопией . польза и вред очищения кишечника

Обозначения и символика

Для обозначения геометрических фигур и их проекций, для отображения отношения между ними, а также для краткости записей геометрических предложений, алгоритмов решения задач и доказательства теорем в курсе используется геометрический язык, составленный из обозначений и символов, принятых в курсе математики (в частности, в новом курсе геометрии в средней школе).

Все многообразие обозначений и символов, а также связи между ними могут быть подразделены на две группы:

группа I — обозначения геометрических фигур и отношений между ними;

группа II обозначения логических операций, составляющие синтаксическую основу геометрического языка.

Ниже приводится полный список математических символов, используемых в данном курсе. Особое внимание уделяется символам, которые применяются для обозначения проекций геометрических фигур.

Группа I

СИМВОЛЫ, ОБОЗНАЧАЮЩИЕ ГЕОМЕТРИЧЕСКИЕ ФИГУРЫ И ОТНОШЕНИЯ МЕЖДУ НИМИ

А. Обозначение геометрических фигур

1. Геометрическая фигура обозначается — Ф.

2. Точки обозначаются прописными буквами латинского алфавита или арабскими цифрами:

А, В, С, D, ... , L, М, N, ...

1,2,3,4,...,12,13,14,...

3. Линии, произвольно расположенные по отношению к плоскостям проекций, обозначаются строчными буквами латинского алфавита:

а, b, с, d, ... , l, m, n, ...

Линии уровня обозначаются: h — горизонталь; f— фронталь.

Для прямых используются также следующие обозначения:

(АВ) — прямая, проходящая через точки А а В;

[АВ) — луч с началом в точке А;

[АВ] — отрезок прямой, ограниченный точками А и В.

4. Поверхности обозначаются строчными буквами греческого алфавита:

α, β, γ, δ,...,ζ,η,ν,...

Чтобы подчеркнуть способ задания поверхности, следует указывать геометрические элементы, которыми она определяется, например:

α(а || b) — плоскость α определяется параллельными прямыми а и b;

β(d1 d2gα) — поверхность β определяется направляющими d1 и d2 , образующей g и плоскостью параллелизма α.

5. Углы обозначаются:

∠ABC — угол с вершиной в точке В, а также ∠α°, ∠β°, ... , ∠φ°, ...

6. Угловая: величина (градусная мера) обозначается знаком , который ставится над углом:

— величина угла АВС;

— величина угла φ.

Прямой угол отмечается квадратом с точкой внутри

7. Расстояния между геометрическими фигурами обозначаются двумя вертикальными отрезками — ||.

Например:

|АВ| — расстояние между точками А и В (длина отрезка АВ);

|Аа| — расстояние от точки А до линии a;

|Аα| — расстояшие от точки А до поверхности α;

|аb| — расстояние между линиями а и b;

|αβ| расстояние между поверхностями α и β.

8. Для плоскостей проекций приняты обозначения: π1 и π2, где π1 - горизонтальная плоскость проекций;

π2 —фрюнтальная плоскость проекций.

При замене плоскостей проекций или введении новых плоскостей последние обозначают π3, π4 и т. д.

9. Оси проекций обозначаются: х, у, z, где х - ось абсцисс; у - ось ординат; z - ось аппликат.

Постояшную прямую эпюра Монжа обозначают k.

10. Проекции точек, линий, поверхностей, любой геометрической фигуры обозначаются теми же буквами (или цифрами), что и оригинал, с добавлением верхнего индекса, соответствующего плоскости проекции, на которой они получены:

А', В', С', D', ... , L', М', N', горизонтальные проекции точек; А", В", С", D", ... , L", М", N", ... фронтальные проекции точек; a' , b' , c' , d' , ... , l', m' , n' , — горизонтальные проекции линий; а" ,b" , с" , d" , ... , l" , m" , n" , ... фронтальные проекции линий; α', β', γ', δ',...,ζ',η',ν',... горизонтальные проекции поверхностей; α", β", γ", δ",...,ζ",η",ν",... фронтальные проекции поверхностей.

11. Следы плоскостей (поверхностей) обозначаются теми же буквами, что и горизонталь или фронталь, с добавлением подстрочного индекса , подчеркивающего, что эти линии лежат в плоскости проекции и принадлежат плоскости (поверхности) α.

Так: h - горизонтальный след плоскости (поверхности) α;

f - фронтальный след плоскости (поверхности) α.

12. Следы прямых (линий) обозначаются заглавными буквами, с которых начинаются слова, определяющие название (в латинской транскрипции) плоскости проекции, которую пересекает линия, с подстрочным индексом, указывающим принадлежность к линии.

Например: Ha — горизонтальный след прямой (линии) а;

Fa — фронтальный след прямой (линии ) a.

13. Последовательность точек, линий (любой фигуры) отмечается подстрочными индексами 1,2,3,..., n:

А1, А2, А3,...,Аn;

a1, a2, a3,...,an;

α1, α2, α3,...,αn;

Ф1, Ф2, Ф3,...,Фn и т. д.

Вспомогательная проекция точки, полученная в результате преобразования для получения действительной величины геометрической фигуры, обозначается той же буквой с подстрочным индексом 0:

A0, B0, С0, D0, ...

Аксонометрические проекции

14. Аксонометрические проекции точек, линий, поверхностей обозначаются теми же буквами, что и натура с добавлением верхнего индекса 0:

А0, В0, С0, D0, ...

10, 20, 30, 40, ...

a0, b0, c0, d0, ...

α0, β0, γ0, δ0, ...

15. Вторичные проекции обозначаются путем добавления верхнего индекса 1 :

А1 0, В1 0, С1 0, D1 0, ...

11 0, 21 0, 31 0, 41 0, ...

a1 0, b1 0, c1 0, d1 0, ...

α1 0, β1 0, γ1 0, δ1 0, ...

Для облегчения чтения чертежей в учебнике при оформлении иллюстративного материала использованы несколько цветов, каждый из которых имеет определенное смысловое значение: линиями (точками) черного цвета обозначены исходные данные; зеленый цвет использован для линий вспомогательных графических построений; красными линиями (точками) показаны результаты построений или те геометрические элементы, на которые следует обратить особое внимание.

Б. Символы, обозначающие отношения между геометрическими фигурами
№ по пор. Обозначение Содержание Пример символической записи
1Совпадают(АВ)≡(CD) — прямая, проходящая через точки А и В,
совпадает с прямой, проходящей через точки С и D
2Конгруентны ∠ABC≅∠MNK — угол АВС конгруентен углу MNK
3ПодобныΔАВС∼ΔMNK — треугольники АВС и MNK подобны
4||Параллельныα||β — плоскость α параллельна плоскости β
5Перпендикулярныа⊥b — прямые а и b перпендикулярны
6Скрещиваютсяс d — прямые с и d скрещиваются
7Касательныеt l — прямая t является касательной к линии l.
βα — плоскость β касательная к поверхности α
8ОтображаютсяФ1→Ф2 — фигура Ф1 отображается на фигуру Ф2
9SЦентр проецирования.
Если центр проецирования несобственная точка,
то его положение обозначается стрелкой,
указывающей направление проецирования
-
10sНаправление проецирования
-
11PПараллельное проецированиерsα Параллельное проецирование — параллельное проецирование
на плоскость α в направлении s

В. Обозначения теоретико-множественные
№ по пор. Обозначение Содержание Пример символической записи Пример символической записи в геометрии
1M,NМножества
-
-
2A,B,C,...Элементы множества
-
-
3{ ... }Состоит из ...Ф{A, B, C,... } Ф{A, B, C,... } — фигура Ф состоит из точек А, В,С, ...
4Пустое множествоL — ∅ — множество L пустое (не содержит элементов )
-
5Принадлежит, является элементом2∈N (где N — множество натуральных чисел) —
число 2 принадлежит множеству N
А ∈ а — точка А принадлежит прямой а
(точка А лежит на прямой а )
6Включает, cодержитN⊂М — множество N является частью (подмножеством) множества
М всех рациональных чисел
а⊂α — прямая а принадлежит плоскости α (понимается в смысле:
множество точек прямой а является подмножеством точек плоскости α)
7Объединение С = A U В — множество С есть объединение множеств
A и В; {1, 2. 3, 4,5} = {1,2,3}∪{4,5}
ABCD = [AB] ∪ [ВС] ∪ [CD] — ломаная линия, ABCD есть
объединение отрезков [АВ], [ВС], [CD]
8Пересечение множеств М=К∩L — множество М есть пересечение множеств К и L
(содержит в себе элементы, принадлежащие как множеству К, так и множеству L).
М ∩ N = ∅— пересечение множеств М и N есть пустое множество
(множества М и N не имеют общих элементов)
а = α ∩ β — прямая а есть пересечение
плоскостей α и β
а ∩ b = ∅ — прямые а и b не пересекаются
(не имеют общих точек)

Группа II СИМВОЛЫ, ОБОЗНАЧАЮЩИЕ ЛОГИЧЕСКИЕ ОПЕРАЦИИ
№ по пор. Обозначение Содержание Пример символической записи
1Конъюнкция предложений; соответствует союзу "и".
Предложение (р∧q) истинно тогда и только тогда,когда р и q оба истинны
α∩β = { К:K∈α∧K∈β} Пересечение поверхностей α и β есть множество точек (линия),
состоящее из всех тех и только тех точек К, которые принадлежат как поверхности α, так и поверхности β
2Дизъюнкция предложений; соответствует союзу "или". Предложение (p∨q)
истинно, когда истинно хотя бы одно из предложений р или q (т. е. или р, или q, или оба).
-
3Импликация — логическое следствие. Предложение р⇒q означает: "если р, то и q"(а||с∧b||с)⇒a||b. Если две прямые параллельны третьей, то они параллельны между собой
4Предложение (р⇔q) понимается в смысле: "если р, то и q; если q, то и р" А∈α⇔А∈l⊂α.
Точка принадлежит плоскости, если она принадлежит некоторой линии, принадлежащей этой плоскости.
Справедливо также и обратное утверждение: если точка принадлежит некоторой линии,
принадлежащей плоскости, то она принадлежит и самой плоскости
5Квантор общности, читается: для всякого, для всех, для любого.
Выражение ∀(x)P(x) означает: "для всякого x: имеет место свойство Р(х) "
∀( ΔАВС)( = 180°) Для всякого (для любого) треугольника сумма величин его углов
при вершинах равна 180°
6Квантор существования, читается: существует.
Выражение ∃(х)P(х) означает: "существует х, обладающее свойством Р(х)"
(∀α)(∃a)[a⊄α∧a||α].Для любой плоскости α существует прямая а, не принадлежащая плоскости α
и параллельная плоскости α
7 ∃1Квантор единственности существования, читается: существует единственное
(-я, -й)... Выражение ∃1(x)(Рх) означает: "существует единственное (только одно) х,
обладающее свойством Рх"
(∀ А, В)(А≠B)(∃1а)(а∋А, В) Для любых двух различных точек А и В существует единственная прямая a,
проходящая через эти точки.
8(Px)Отрицание высказывания P(x)аb(∃α)(α⊃а, Ь).Если прямые а и b скрещиваются, то не существует плоскости а, которая содержит их
9\Отрицание знака
[AB]≠[CD] —отрезок [АВ] не равен отрезку [CD].а?b — линия а не параллельна линии b